Sletning fra et B-træ

I denne vejledning lærer du, hvordan du sletter en nøgle fra et b-træ. Du finder også arbejdseksempler på sletning af nøgler fra et B-træ i C, C ++, Java og Python.

Sletning af et element i et B-træ består af tre hovedbegivenheder: at søge i den node, hvor nøglen, der skal slettes, findes , slette nøglen og balancere træet, hvis det er nødvendigt.

Mens du sletter et træ, kan der forekomme en tilstand kaldet underflow . Underflow opstår, når en node indeholder mindre end det mindste antal nøgler, den skal indeholde.

Vilkårene, der skal forstås, før du studerer sletningsoperation, er:

  1. Forudgående forgænger
    Den største nøgle til venstre for et knudepunkt kaldes dens forordner.
  2. Inorder efterfølger
    Den mindste nøgle til højre for et knudepunkt kaldes dens ordre efterfølger.

Sletning

Før man gennemgår nedenstående trin, skal man kende disse fakta om et B-træ med grad m .

  1. En knude kan maksimalt have m børn. (dvs. 3)
  2. En knude kan maksimalt indeholde m - 1nøgler. (dvs. 2)
  3. En knude skal have et minimum af ⌈m/2⌉børn. (dvs. 2)
  4. En knude (undtagen rodknude) skal indeholde et minimum af ⌈m/2⌉ - 1nøgler. (dvs. 1)

Der er tre hovedtilfælde til sletning i et B-træ.

Sag I

Nøglen, der skal slettes, ligger i bladet. Der er to tilfælde for det.

  1. Sletningen af ​​nøglen overtræder ikke egenskaben for det mindste antal nøgler, som en node skal indeholde.
    I træet nedenfor overtræder sletning af 32 ikke ovenstående egenskaber. Sletning af en bladnøgle (32) fra B-træet
  2. Sletning af nøglen overtræder egenskaben for det mindste antal nøgler, som en node skal indeholde. I dette tilfælde låner vi en nøgle fra dens umiddelbare nærliggende søskendeknude i rækkefølgen fra venstre mod højre.
    Besøg først det nærmeste venstre søskende. Hvis den venstre søskendeknude har mere end et minimum antal nøgler, så lån en nøgle fra denne knude.
    Ellers skal du tjekke for at låne fra den umiddelbare højre søskendeknude.
    Sletning af 31 resulterer i ovenstående tilstand i træet nedenfor. Lad os låne en nøgle fra venstre søskendeknude. Sletning af en bladnøgle (31) Hvis begge de umiddelbare søskendeknudepunkter allerede har et minimum antal nøgler, skal du flette noden med enten den venstre søskendeknude eller den højre søskendeknude. Denne fletning sker gennem den overordnede node.
    Sletning af 30 resultater i ovenstående tilfælde.
    Slet en bladnøgle (30)

Sag II

Hvis nøglen, der skal slettes, ligger i den interne knude, opstår følgende tilfælde.

  1. Den interne knude, der slettes, erstattes af en forordner, hvis det venstre barn har mere end det mindste antal nøgler. Sletning af en intern node (33)
  2. Den interne node, der slettes, erstattes af en efterfølger, hvis det rigtige barn har mere end det mindste antal nøgler.
  3. Hvis begge børn har nøjagtigt et minimum antal nøgler, skal du flette de venstre og de rigtige børn.
    Sletning af en intern node (30) Efter sammenfletning, hvis den overordnede node har mindre end minimum antal nøgler, skal du kigge efter søskende som i sag I.

Sag III

I dette tilfælde krymper højden på træet. Hvis målnøglen ligger i en intern node, og sletningen af ​​nøglen fører til et færre antal nøgler i noden (dvs. mindre end det krævede minimum), skal du kigge efter inorder-forgængeren og inorder-efterfølgeren. Hvis begge børn indeholder et minimum antal nøgler, kan lån ikke ske. Dette fører til sag II (3), dvs. fusionering af børnene.

Igen skal du kigge efter søskende til at låne en nøgle. Men hvis søskende også kun har et minimum antal nøgler, skal du flette knudepunktet med søskende sammen med forældrene. Arranger børnene i overensstemmelse hermed (stigende rækkefølge).

Sletning af en intern node (10)

Python, Java og C / C ++ eksempler

Python Java C C ++
 # Deleting a key on a B-tree in Python # Btree node class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = () self.child = () class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # Insert a key def insert(self, k): root = self.root if len(root.keys) == (2 * self.t) - 1: temp = BTreeNode() self.root = temp temp.child.insert(0, root) self.split_child(temp, 0) self.insert_non_full(temp, k) else: self.insert_non_full(root, k) # Insert non full def insert_non_full(self, x, k): i = len(x.keys) - 1 if x.leaf: x.keys.append((None, None)) while i>= 0 and k(0)  = 0 and k(0)  x.keys(i)(0): i += 1 self.insert_non_full(x.child(i), k) # Split the child def split_child(self, x, i): t = self.t y = x.child(i) z = BTreeNode(y.leaf) x.child.insert(i + 1, z) x.keys.insert(i, y.keys(t - 1)) z.keys = y.keys(t: (2 * t) - 1) y.keys = y.keys(0: t - 1) if not y.leaf: z.child = y.child(t: 2 * t) y.child = y.child(0: t - 1) # Delete a node def delete(self, x, k): t = self.t i = 0 while i x.keys(i)(0): i += 1 if x.leaf: if i < len(x.keys) and x.keys(i)(0) == k(0): x.keys.pop(i) return return if i = t: self.delete(x.child(i), k) else: if i != 0 and i + 2 = t: self.delete_sibling(x, i, i - 1) elif len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i == 0: if len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i + 1 == len(x.child): if len(x.child(i - 1).keys)>= t: self.delete_sibling(x, i, i - 1) else: self.delete_merge(x, i, i - 1) self.delete(x.child(i), k) # Delete internal node def delete_internal_node(self, x, k, i): t = self.t if x.leaf: if x.keys(i)(0) == k(0): x.keys.pop(i) return return if len(x.child(i).keys)>= t: x.keys(i) = self.delete_predecessor(x.child(i)) return elif len(x.child(i + 1).keys)>= t: x.keys(i) = self.delete_successor(x.child(i + 1)) return else: self.delete_merge(x, i, i + 1) self.delete_internal_node(x.child(i), k, self.t - 1) # Delete the predecessor def delete_predecessor(self, x): if x.leaf: return x.pop() n = len(x.keys) - 1 if len(x.child(n).keys)>= self.t: self.delete_sibling(x, n + 1, n) else: self.delete_merge(x, n, n + 1) self.delete_predecessor(x.child(n)) # Delete the successor def delete_successor(self, x): if x.leaf: return x.keys.pop(0) if len(x.child(1).keys)>= self.t: self.delete_sibling(x, 0, 1) else: self.delete_merge(x, 0, 1) self.delete_successor(x.child(0)) # Delete resolution def delete_merge(self, x, i, j): cnode = x.child(i) if j> i: rsnode = x.child(j) cnode.keys.append(x.keys(i)) for k in range(len(rsnode.keys)): cnode.keys.append(rsnode.keys(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child.pop()) new = cnode x.keys.pop(i) x.child.pop(j) else: lsnode = x.child(j) lsnode.keys.append(x.keys(j)) for i in range(len(cnode.keys)): lsnode.keys.append(cnode.keys(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child.pop()) new = lsnode x.keys.pop(j) x.child.pop(i) if x == self.root and len(x.keys) == 0: self.root = new # Delete the sibling def delete_sibling(self, x, i, j): cnode = x.child(i) if i 0: cnode.child.append(rsnode.child(0)) rsnode.child.pop(0) rsnode.keys.pop(0) else: lsnode = x.child(j) cnode.keys.insert(0, x.keys(i - 1)) x.keys(i - 1) = lsnode.keys.pop() if len(lsnode.child)> 0: cnode.child.insert(0, lsnode.child.pop()) # Print the tree def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child)> 0: for i in x.child: self.print_tree(i, l) B = BTree(3) for i in range(10): B.insert((i, 2 * i)) B.print_tree(B.root) B.delete(B.root, (8,)) print("") B.print_tree(B.root)  
 // Inserting a key on a B-tree in Java import java.util.Stack; public class BTree ( private int T; public class Node ( int n; int key() = new int(2 * T - 1); Node child() = new Node(2 * T); boolean leaf = true; public int Find(int k) ( for (int i = 0; i < this.n; i++) ( if (this.key(i) == k) ( return i; ) ) return -1; ); ) public BTree(int t) ( T = t; root = new Node(); root.n = 0; root.leaf = true; ) private Node root; // Search the key private Node Search(Node x, int key) ( int i = 0; if (x == null) return x; for (i = 0; i < x.n; i++) ( if (key < x.key(i)) ( break; ) if (key == x.key(i)) ( return x; ) ) if (x.leaf) ( return null; ) else ( return Search(x.child(i), key); ) ) // Split function private void Split(Node x, int pos, Node y) ( Node z = new Node(); z.leaf = y.leaf; z.n = T - 1; for (int j = 0; j < T - 1; j++) ( z.key(j) = y.key(j + T); ) if (!y.leaf) ( for (int j = 0; j = pos + 1; j--) ( x.child(j + 1) = x.child(j); ) x.child(pos + 1) = z; for (int j = x.n - 1; j>= pos; j--) ( x.key(j + 1) = x.key(j); ) x.key(pos) = y.key(T - 1); x.n = x.n + 1; ) // Insert the key public void Insert(final int key) ( Node r = root; if (r.n == 2 * T - 1) ( Node s = new Node(); root = s; s.leaf = false; s.n = 0; s.child(0) = r; Split(s, 0, r); _Insert(s, key); ) else ( _Insert(r, key); ) ) // Insert the node final private void _Insert(Node x, int k) ( if (x.leaf) ( int i = 0; for (i = x.n - 1; i>= 0 && k  = 0 && k x.key(i)) ( i++; ) ) _Insert(x.child(i), k); ) ) public void Show() ( Show(root); ) private void Remove(Node x, int key) ( int pos = x.Find(key); if (pos != -1) ( if (x.leaf) ( int i = 0; for (i = 0; i < x.n && x.key(i) != key; i++) ( ) ; for (; i = T) ( for (;;) ( if (pred.leaf) ( System.out.println(pred.n); predKey = pred.key(pred.n - 1); break; ) else ( pred = pred.child(pred.n); ) ) Remove(pred, predKey); x.key(pos) = predKey; return; ) Node nextNode = x.child(pos + 1); if (nextNode.n>= T) ( int nextKey = nextNode.key(0); if (!nextNode.leaf) ( nextNode = nextNode.child(0); for (;;) ( if (nextNode.leaf) ( nextKey = nextNode.key(nextNode.n - 1); break; ) else ( nextNode = nextNode.child(nextNode.n); ) ) ) Remove(nextNode, nextKey); x.key(pos) = nextKey; return; ) int temp = pred.n + 1; pred.key(pred.n++) = x.key(pos); for (int i = 0, j = pred.n; i < nextNode.n; i++) ( pred.key(j++) = nextNode.key(i); pred.n++; ) for (int i = 0; i < nextNode.n + 1; i++) ( pred.child(temp++) = nextNode.child(i); ) x.child(pos) = pred; for (int i = pos; i < x.n; i++) ( if (i != 2 * T - 2) ( x.key(i) = x.key(i + 1); ) ) for (int i = pos + 1; i < x.n + 1; i++) ( if (i != 2 * T - 1) ( x.child(i) = x.child(i + 1); ) ) x.n--; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(pred, key); return; ) ) else ( for (pos = 0; pos key) ( break; ) ) Node tmp = x.child(pos); if (tmp.n>= T) ( Remove(tmp, key); return; ) if (true) ( Node nb = null; int devider = -1; if (pos != x.n && x.child(pos + 1).n>= T) ( devider = x.key(pos); nb = x.child(pos + 1); x.key(pos) = nb.key(0); tmp.key(tmp.n++) = devider; tmp.child(tmp.n) = nb.child(0); for (int i = 1; i < nb.n; i++) ( nb.key(i - 1) = nb.key(i); ) for (int i = 1; i = T) ( devider = x.key(pos - 1); nb = x.child(pos - 1); x.key(pos - 1) = nb.key(nb.n - 1); Node child = nb.child(nb.n); nb.n--; for (int i = tmp.n; i> 0; i--) ( tmp.key(i) = tmp.key(i - 1); ) tmp.key(0) = devider; for (int i = tmp.n + 1; i> 0; i--) ( tmp.child(i) = tmp.child(i - 1); ) tmp.child(0) = child; tmp.n++; Remove(tmp, key); return; ) else ( Node lt = null; Node rt = null; boolean last = false; if (pos != x.n) ( devider = x.key(pos); lt = x.child(pos); rt = x.child(pos + 1); ) else ( devider = x.key(pos - 1); rt = x.child(pos); lt = x.child(pos - 1); last = true; pos--; ) for (int i = pos; i < x.n - 1; i++) ( x.key(i) = x.key(i + 1); ) for (int i = pos + 1; i < x.n; i++) ( x.child(i) = x.child(i + 1); ) x.n--; lt.key(lt.n++) = devider; for (int i = 0, j = lt.n; i < rt.n + 1; i++, j++) ( if (i < rt.n) ( lt.key(j) = rt.key(i); ) lt.child(j) = rt.child(i); ) lt.n += rt.n; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(lt, key); return; ) ) ) ) public void Remove(int key) ( Node x = Search(root, key); if (x == null) ( return; ) Remove(root, key); ) public void Task(int a, int b) ( Stack st = new Stack(); FindKeys(a, b, root, st); while (st.isEmpty() == false) ( this.Remove(root, st.pop()); ) ) private void FindKeys(int a, int b, Node x, Stack st) ( int i = 0; for (i = 0; i < x.n && x.key(i) a) ( st.push(x.key(i)); ) ) if (!x.leaf) ( for (int j = 0; j < i + 1; j++) ( FindKeys(a, b, x.child(j), st); ) ) ) public boolean Contain(int k) ( if (this.Search(root, k) != null) ( return true; ) else ( return false; ) ) // Show the node private void Show(Node x) ( assert (x == null); for (int i = 0; i < x.n; i++) ( System.out.print(x.key(i) + " "); ) if (!x.leaf) ( for (int i = 0; i < x.n + 1; i++) ( Show(x.child(i)); ) ) ) public static void main(String() args) ( BTree b = new BTree(3); b.Insert(8); b.Insert(9); b.Insert(10); b.Insert(11); b.Insert(15); b.Insert(20); b.Insert(17); b.Show(); b.Remove(10); System.out.println(); b.Show(); ) ) 
 // Deleting a key from a B-tree in C #include #include #define MAX 3 #define MIN 2 struct BTreeNode ( int item(MAX + 1), count; struct BTreeNode *linker(MAX + 1); ); struct BTreeNode *root; // Node creation struct BTreeNode *createNode(int item, struct BTreeNode *child) ( struct BTreeNode *newNode; newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); newNode->item(1) = item; newNode->count = 1; newNode->linker(0) = root; newNode->linker(1) = child; return newNode; ) // Add value to the node void addValToNode(int item, int pos, struct BTreeNode *node, struct BTreeNode *child) ( int j = node->count; while (j> pos) ( node->item(j + 1) = node->item(j); node->linker(j + 1) = node->linker(j); j--; ) node->item(j + 1) = item; node->linker(j + 1) = child; node->count++; ) // Split the node void splitNode(int item, int *pval, int pos, struct BTreeNode *node, struct BTreeNode *child, struct BTreeNode **newNode) ( int median, j; if (pos> MIN) median = MIN + 1; else median = MIN; *newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); j = median + 1; while (j item(j - median) = node->item(j); (*newNode)->linker(j - median) = node->linker(j); j++; ) node->count = median; (*newNode)->count = MAX - median; if (pos item(node->count); (*newNode)->linker(0) = node->linker(node->count); node->count--; ) // Set the value in the node int setValueInNode(int item, int *pval, struct BTreeNode *node, struct BTreeNode **child) ( int pos; if (!node) ( *pval = item; *child = NULL; return 1; ) if (item item(1)) ( pos = 0; ) else ( for (pos = node->count; (item item(pos) && pos> 1); pos--) ; if (item == node->item(pos)) ( printf("Duplicates not allowed"); return 0; ) ) if (setValueInNode(item, pval, node->linker(pos), child)) ( if (node->count linker(pos); for (; dummy->linker(0) != NULL;) dummy = dummy->linker(0); myNode->item(pos) = dummy->item(1); ) // Remove the value void removeVal(struct BTreeNode *myNode, int pos) ( int i = pos + 1; while (i count) ( myNode->item(i - 1) = myNode->item(i); myNode->linker(i - 1) = myNode->linker(i); i++; ) myNode->count--; ) // Do right shift void rightShift(struct BTreeNode *myNode, int pos) ( struct BTreeNode *x = myNode->linker(pos); int j = x->count; while (j> 0) ( x->item(j + 1) = x->item(j); x->linker(j + 1) = x->linker(j); ) x->item(1) = myNode->item(pos); x->linker(1) = x->linker(0); x->count++; x = myNode->linker(pos - 1); myNode->item(pos) = x->item(x->count); myNode->linker(pos) = x->linker(x->count); x->count--; return; ) // Do left shift void leftShift(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x = myNode->linker(pos - 1); x->count++; x->item(x->count) = myNode->item(pos); x->linker(x->count) = myNode->linker(pos)->linker(0); x = myNode->linker(pos); myNode->item(pos) = x->item(1); x->linker(0) = x->linker(1); x->count--; while (j count) ( x->item(j) = x->item(j + 1); x->linker(j) = x->linker(j + 1); j++; ) return; ) // Merge the nodes void mergeNodes(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x1 = myNode->linker(pos), *x2 = myNode->linker(pos - 1); x2->count++; x2->item(x2->count) = myNode->item(pos); x2->linker(x2->count) = myNode->linker(0); while (j count) ( x2->count++; x2->item(x2->count) = x1->item(j); x2->linker(x2->count) = x1->linker(j); j++; ) j = pos; while (j count) ( myNode->item(j) = myNode->item(j + 1); myNode->linker(j) = myNode->linker(j + 1); j++; ) myNode->count--; free(x1); ) // Adjust the node void adjustNode(struct BTreeNode *myNode, int pos) ( if (!pos) ( if (myNode->linker(1)->count> MIN) ( leftShift(myNode, 1); ) else ( mergeNodes(myNode, 1); ) ) else ( if (myNode->count != pos) ( if (myNode->linker(pos - 1)->count> MIN) ( rightShift(myNode, pos); ) else ( if (myNode->linker(pos + 1)->count> MIN) ( leftShift(myNode, pos + 1); ) else ( mergeNodes(myNode, pos); ) ) ) else ( if (myNode->linker(pos - 1)->count> MIN) rightShift(myNode, pos); else mergeNodes(myNode, pos); ) ) ) // Delete a value from the node int delValFromNode(int item, struct BTreeNode *myNode) ( int pos, flag = 0; if (myNode) ( if (item item(1)) ( pos = 0; flag = 0; ) else ( for (pos = myNode->count; (item item(pos) && pos> 1); pos--) ; if (item == myNode->item(pos)) ( flag = 1; ) else ( flag = 0; ) ) if (flag) ( if (myNode->linker(pos - 1)) ( copySuccessor(myNode, pos); flag = delValFromNode(myNode->item(pos), myNode->linker(pos)); if (flag == 0) ( printf("Given data is not present in B-Tree"); ) ) else ( removeVal(myNode, pos); ) ) else ( flag = delValFromNode(item, myNode->linker(pos)); ) if (myNode->linker(pos)) ( if (myNode->linker(pos)->count count == 0) ( tmp = myNode; myNode = myNode->linker(0); free(tmp); ) ) root = myNode; return; ) void searching(int item, int *pos, struct BTreeNode *myNode) ( if (!myNode) ( return; ) if (item item(1)) ( *pos = 0; ) else ( for (*pos = myNode->count; (item item(*pos) && *pos> 1); (*pos)--) ; if (item == myNode->item(*pos)) ( printf("%d present in B-tree", item); return; ) ) searching(item, pos, myNode->linker(*pos)); return; ) void traversal(struct BTreeNode *myNode) ( int i; if (myNode) ( for (i = 0; i count; i++) ( traversal(myNode->linker(i)); printf("%d ", myNode->item(i + 1)); ) traversal(myNode->linker(i)); ) ) int main() ( int item, ch; insertion(8); insertion(9); insertion(10); insertion(11); insertion(15); insertion(16); insertion(17); insertion(18); insertion(20); insertion(23); traversal(root); delete (20, root); printf(""); traversal(root); )
 // Deleting a key from a B-tree in C++ #include using namespace std; class BTreeNode ( int *keys; int t; BTreeNode **C; int n; bool leaf; public: BTreeNode(int _t, bool _leaf); void traverse(); int findKey(int k); void insertNonFull(int k); void splitChild(int i, BTreeNode *y); void deletion(int k); void removeFromLeaf(int idx); void removeFromNonLeaf(int idx); int getPredecessor(int idx); int getSuccessor(int idx); void fill(int idx); void borrowFromPrev(int idx); void borrowFromNext(int idx); void merge(int idx); friend class BTree; ); class BTree ( BTreeNode *root; int t; public: BTree(int _t) ( root = NULL; t = _t; ) void traverse() ( if (root != NULL) root->traverse(); ) void insertion(int k); void deletion(int k); ); // B tree node BTreeNode::BTreeNode(int t1, bool leaf1) ( t = t1; leaf = leaf1; keys = new int(2 * t - 1); C = new BTreeNode *(2 * t); n = 0; ) // Find the key int BTreeNode::findKey(int k) ( int idx = 0; while (idx < n && keys(idx) < k) ++idx; return idx; ) // Deletion operation void BTreeNode::deletion(int k) ( int idx = findKey(k); if (idx < n && keys(idx) == k) ( if (leaf) removeFromLeaf(idx); else removeFromNonLeaf(idx); ) else ( if (leaf) ( cout << "The key " << k  deletion(k); else C(idx)->deletion(k); ) return; ) // Remove from the leaf void BTreeNode::removeFromLeaf(int idx) ( for (int i = idx + 1; i n>= t) ( int pred = getPredecessor(idx); keys(idx) = pred; C(idx)->deletion(pred); ) else if (C(idx + 1)->n>= t) ( int succ = getSuccessor(idx); keys(idx) = succ; C(idx + 1)->deletion(succ); ) else ( merge(idx); C(idx)->deletion(k); ) return; ) int BTreeNode::getPredecessor(int idx) ( BTreeNode *cur = C(idx); while (!cur->leaf) cur = cur->C(cur->n); return cur->keys(cur->n - 1); ) int BTreeNode::getSuccessor(int idx) ( BTreeNode *cur = C(idx + 1); while (!cur->leaf) cur = cur->C(0); return cur->keys(0); ) void BTreeNode::fill(int idx) ( if (idx != 0 && C(idx - 1)->n>= t) borrowFromPrev(idx); else if (idx != n && C(idx + 1)->n>= t) borrowFromNext(idx); else ( if (idx != n) merge(idx); else merge(idx - 1); ) return; ) // Borrow from previous void BTreeNode::borrowFromPrev(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx - 1); for (int i = child->n - 1; i>= 0; --i) child->keys(i + 1) = child->keys(i); if (!child->leaf) ( for (int i = child->n; i>= 0; --i) child->C(i + 1) = child->C(i); ) child->keys(0) = keys(idx - 1); if (!child->leaf) child->C(0) = sibling->C(sibling->n); keys(idx - 1) = sibling->keys(sibling->n - 1); child->n += 1; sibling->n -= 1; return; ) // Borrow from the next void BTreeNode::borrowFromNext(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys((child->n)) = keys(idx); if (!(child->leaf)) child->C((child->n) + 1) = sibling->C(0); keys(idx) = sibling->keys(0); for (int i = 1; i n; ++i) sibling->keys(i - 1) = sibling->keys(i); if (!sibling->leaf) ( for (int i = 1; i n; ++i) sibling->C(i - 1) = sibling->C(i); ) child->n += 1; sibling->n -= 1; return; ) // Merge void BTreeNode::merge(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys(t - 1) = keys(idx); for (int i = 0; i n; ++i) child->keys(i + t) = sibling->keys(i); if (!child->leaf) ( for (int i = 0; i n; ++i) child->C(i + t) = sibling->C(i); ) for (int i = idx + 1; i < n; ++i) keys(i - 1) = keys(i); for (int i = idx + 2; i n += sibling->n + 1; n--; delete (sibling); return; ) // Insertion operation void BTree::insertion(int k) ( if (root == NULL) ( root = new BTreeNode(t, true); root->keys(0) = k; root->n = 1; ) else ( if (root->n == 2 * t - 1) ( BTreeNode *s = new BTreeNode(t, false); s->C(0) = root; s->splitChild(0, root); int i = 0; if (s->keys(0) C(i)->insertNonFull(k); root = s; ) else root->insertNonFull(k); ) ) // Insertion non full void BTreeNode::insertNonFull(int k) ( int i = n - 1; if (leaf == true) ( while (i>= 0 && keys(i)> k) ( keys(i + 1) = keys(i); i--; ) keys(i + 1) = k; n = n + 1; ) else ( while (i>= 0 && keys(i)> k) i--; if (C(i + 1)->n == 2 * t - 1) ( splitChild(i + 1, C(i + 1)); if (keys(i + 1) insertNonFull(k); ) ) // Split child void BTreeNode::splitChild(int i, BTreeNode *y) ( BTreeNode *z = new BTreeNode(y->t, y->leaf); z->n = t - 1; for (int j = 0; j keys(j) = y->keys(j + t); if (y->leaf == false) ( for (int j = 0; j C(j) = y->C(j + t); ) y->n = t - 1; for (int j = n; j>= i + 1; j--) C(j + 1) = C(j); C(i + 1) = z; for (int j = n - 1; j>= i; j--) keys(j + 1) = keys(j); keys(i) = y->keys(t - 1); n = n + 1; ) // Traverse void BTreeNode::traverse() ( int i; for (i = 0; i traverse(); cout << " " 
 n == 0) ( BTreeNode *tmp = root; if (root->leaf) root = NULL; else root = root->C(0); delete tmp; ) return; ) int main() ( BTree t(3); t.insertion(8); t.insertion(9); t.insertion(10); t.insertion(11); t.insertion(15); t.insertion(16); t.insertion(17); t.insertion(18); t.insertion(20); t.insertion(23); cout << "The B-tree is: "; t.traverse(); t.deletion(20); cout << "The B-tree is: "; t.traverse(); )  

Sletningskompleksitet

Bedste tilfælde Tidskompleksitet: Θ(log n)

Gennemsnitlig sag Rumkompleksitet: Θ(n)

Værste tilfælde Rumkompleksitet: Θ(n)

Interessante artikler...