I denne vejledning lærer du, hvad en kø med dobbelt ende (deque) er. Du finder også arbejdseksempler på forskellige operationer på en deque i C, C ++, Java og Python.
Deque eller Double Ended Queue er en type kø, hvor indsættelse og fjernelse af elementer kan udføres fra enten forfra eller bagfra. Således følger den ikke FIFO-reglen (First In First Out).

Typer af Deque
- Input Restricted Deque
I denne deque er input begrænset i en enkelt ende, men tillader sletning i begge ender. - Output Restricted Deque
I denne deque er output begrænset i en enkelt ende, men tillader indsættelse i begge ender.
Operationer på en Deque
Nedenfor er den cirkulære matriximplementering af deque. I en cirkulær matrix, hvis matrixen er fuld, starter vi fra starten.
Men i en lineær matriximplementering, hvis matrixen er fuld, kan der ikke indsættes flere elementer. Hvis matrixen er fuld i hver af nedenstående operationer, kastes "overløbsmeddelelse".
Før du udfører følgende handlinger, følges disse trin.
- Tag en matrix (deque) af størrelse n.
- Sæt to markører på første position, og indstil
front = -1
ogrear = 0
.

1. Indsæt foran
Denne operation tilføjer et element foran.
- Kontroller frontens position.
Kontroller frontens position
- Hvis
front < 1
, genstart initialiserfront = n-1
(sidste indeks).Skift front til slutningen
- Ellers mindskes fronten med 1.
- Tilføj den nye nøgle 5 i
array(front)
.Indsæt elementet foran
2. Indsæt bagpå
Denne operation tilføjer et element bagpå.
- Kontroller, om matrixen er fuld.
Kontroller, om deque er fuld
- Genstart initialiseringen, hvis deque er fuld
rear = 0
. - Ellers øges bagenden med 1.
Forøg bagenden
- Tilføj den nye nøgle 5 i
array(rear)
.Indsæt elementet bagpå
3. Slet fra forsiden
Operationen sletter et element forfra.
- Kontroller, om skiltet er tomt.
Kontroller, om deque er tom
- Hvis deque er tom (dvs.
front = -1
), kan sletning ikke udføres ( underflowtilstand ). - Hvis deque kun har et element (dvs.
front = rear
), skal du indstillefront = -1
ogrear = -1
. - Ellers hvis fronten er i slutningen (dvs.
front = n - 1
), skal du gå til frontenfront = 0
. - Ellers
front = front + 1
.Forøg fronten
4. Slet bagfra
Denne handling sletter et element bagfra.
- Kontroller, om skiltet er tomt.
Kontroller, om deque er tom
- Hvis deque er tom (dvs.
front = -1
), kan sletning ikke udføres ( underflowtilstand ). - Hvis deque kun har et element (dvs.
front = rear
), skal du sættefront = -1
ogrear = -1
ellers følge nedenstående trin. - Hvis bagsiden er forrest (dvs.
rear = 0
), skal du indstille gå fremadrear = n - 1
. - Ellers
rear = rear - 1
.Sænk bagenden
5. Marker Tom
Denne handling kontrollerer, om deque er tom. Hvis front = -1
deque er tom.
6. Kontroller fuldt ud
Denne handling kontrollerer, om deque er fuld. Hvis front = 0
og rear = n - 1
ELLER front = rear + 1
, er deken fuld.
Deque-implementering i Python, Java, C og C ++
Python Java C C ++ # Deque implementaion in python class Deque: def __init__(self): self.items = () def isEmpty(self): return self.items == () def addRear(self, item): self.items.append(item) def addFront(self, item): self.items.insert(0, item) def removeFront(self): return self.items.pop() def removeRear(self): return self.items.pop(0) def size(self): return len(self.items) d = Deque() print(d.isEmpty()) d.addRear(8) d.addRear(5) d.addFront(7) d.addFront(10) print(d.size()) print(d.isEmpty()) d.addRear(11) print(d.removeRear()) print(d.removeFront()) d.addFront(55) d.addRear(45) print(d.items)
// Deque implementation in Java class Deque ( static final int MAX = 100; int arr(); int front; int rear; int size; public Deque(int size) ( arr = new int(MAX); front = -1; rear = 0; this.size = size; ) boolean isFull() ( return ((front == 0 && rear == size - 1) || front == rear + 1); ) boolean isEmpty() ( return (front == -1); ) void insertfront(int key) ( if (isFull()) ( System.out.println("Overflow"); return; ) if (front == -1) ( front = 0; rear = 0; ) else if (front == 0) front = size - 1; else front = front - 1; arr(front) = key; ) void insertrear(int key) ( if (isFull()) ( System.out.println(" Overflow "); return; ) if (front == -1) ( front = 0; rear = 0; ) else if (rear == size - 1) rear = 0; else rear = rear + 1; arr(rear) = key; ) void deletefront() ( if (isEmpty()) ( System.out.println("Queue Underflow"); return; ) // Deque has only one element if (front == rear) ( front = -1; rear = -1; ) else if (front == size - 1) front = 0; else front = front + 1; ) void deleterear() ( if (isEmpty()) ( System.out.println(" Underflow"); return; ) if (front == rear) ( front = -1; rear = -1; ) else if (rear == 0) rear = size - 1; else rear = rear - 1; ) int getFront() ( if (isEmpty()) ( System.out.println(" Underflow"); return -1; ) return arr(front); ) int getRear() ( if (isEmpty() || rear < 0) ( System.out.println(" Underflow"); return -1; ) return arr(rear); ) public static void main(String() args) ( Deque dq = new Deque(4); System.out.println("Insert element at rear end : 12 "); dq.insertrear(12); System.out.println("insert element at rear end : 14 "); dq.insertrear(14); System.out.println("get rear element : " + dq.getRear()); dq.deleterear(); System.out.println("After delete rear element new rear become : " + dq.getRear()); System.out.println("inserting element at front end"); dq.insertfront(13); System.out.println("get front element: " + dq.getFront()); dq.deletefront(); System.out.println("After delete front element new front become : " + +dq.getFront()); ) )
// Deque implementation in C #include #define MAX 10 void addFront(int *, int, int *, int *); void addRear(int *, int, int *, int *); int delFront(int *, int *, int *); int delRear(int *, int *, int *); void display(int *); int count(int *); int main() ( int arr(MAX); int front, rear, i, n; front = rear = -1; for (i = 0; i < MAX; i++) arr(i) = 0; addRear(arr, 5, &front, &rear); addFront(arr, 12, &front, &rear); addRear(arr, 11, &front, &rear); addFront(arr, 5, &front, &rear); addRear(arr, 6, &front, &rear); addFront(arr, 8, &front, &rear); printf("Elements in a deque: "); display(arr); i = delFront(arr, &front, &rear); printf("removed item: %d", i); printf("Elements in a deque after deletion: "); display(arr); addRear(arr, 16, &front, &rear); addRear(arr, 7, &front, &rear); printf("Elements in a deque after addition: "); display(arr); i = delRear(arr, &front, &rear); printf("removed item: %d", i); printf("Elements in a deque after deletion: "); display(arr); n = count(arr); printf("Total number of elements in deque: %d", n); ) void addFront(int *arr, int item, int *pfront, int *prear) ( int i, k, c; if (*pfront == 0 && *prear == MAX - 1) ( printf("Deque is full."); return; ) if (*pfront == -1) ( *pfront = *prear = 0; arr(*pfront) = item; return; ) if (*prear != MAX - 1) ( c = count(arr); k = *prear + 1; for (i = 1; i <= c; i++) ( arr(k) = arr(k - 1); k--; ) arr(k) = item; *pfront = k; (*prear)++; ) else ( (*pfront)--; arr(*pfront) = item; ) ) void addRear(int *arr, int item, int *pfront, int *prear) ( int i, k; if (*pfront == 0 && *prear == MAX - 1) ( printf("Deque is full."); return; ) if (*pfront == -1) ( *prear = *pfront = 0; arr(*prear) = item; return; ) if (*prear == MAX - 1) ( k = *pfront - 1; for (i = *pfront - 1; i < *prear; i++) ( k = i; if (k == MAX - 1) arr(k) = 0; else arr(k) = arr(i + 1); ) (*prear)--; (*pfront)--; ) (*prear)++; arr(*prear) = item; ) int delFront(int *arr, int *pfront, int *prear) ( int item; if (*pfront == -1) ( printf("Deque is empty."); return 0; ) item = arr(*pfront); arr(*pfront) = 0; if (*pfront == *prear) *pfront = *prear = -1; else (*pfront)++; return item; ) int delRear(int *arr, int *pfront, int *prear) ( int item; if (*pfront == -1) ( printf("Deque is empty."); return 0; ) item = arr(*prear); arr(*prear) = 0; (*prear)--; if (*prear == -1) *pfront = -1; return item; ) void display(int *arr) ( int i; printf(" front: "); for (i = 0; i < MAX; i++) printf(" %d", arr(i)); printf(" :rear"); ) int count(int *arr) ( int c = 0, i; for (i = 0; i < MAX; i++) ( if (arr(i) != 0) c++; ) return c; )
// Deque implementation in C++ #include using namespace std; #define MAX 10 class Deque ( int arr(MAX); int front; int rear; int size; public: Deque(int size) ( front = -1; rear = 0; this->size = size; ) void insertfront(int key); void insertrear(int key); void deletefront(); void deleterear(); bool isFull(); bool isEmpty(); int getFront(); int getRear(); ); bool Deque::isFull() ( return ((front == 0 && rear == size - 1) || front == rear + 1); ) bool Deque::isEmpty() ( return (front == -1); ) void Deque::insertfront(int key) ( if (isFull()) ( cout << "Overflow" << endl; return; ) if (front == -1) ( front = 0; rear = 0; ) else if (front == 0) front = size - 1; else front = front - 1; arr(front) = key; ) void Deque ::insertrear(int key) ( if (isFull()) ( cout << " Overflow " << endl; return; ) if (front == -1) ( front = 0; rear = 0; ) else if (rear == size - 1) rear = 0; else rear = rear + 1; arr(rear) = key; ) void Deque ::deletefront() ( if (isEmpty()) ( cout << "Queue Underflow" << endl; return; ) if (front == rear) ( front = -1; rear = -1; ) else if (front == size - 1) front = 0; else front = front + 1; ) void Deque::deleterear() ( if (isEmpty()) ( cout << " Underflow" << endl; return; ) if (front == rear) ( front = -1; rear = -1; ) else if (rear == 0) rear = size - 1; else rear = rear - 1; ) int Deque::getFront() ( if (isEmpty()) ( cout << " Underflow" << endl; return -1; ) return arr(front); ) int Deque::getRear() ( if (isEmpty() || rear < 0) ( cout << " Underflow" << endl; return -1; ) return arr(rear); ) int main() ( Deque dq(4); cout << "insert element at rear end "; dq.insertrear(5); dq.insertrear(11); cout << "rear element: " << dq.getRear() << endl; dq.deleterear(); cout << "after deletion of the rear element, the new rear element: " << dq.getRear() << endl; cout << "insert element at front end "; dq.insertfront(8); cout << "front element: " << dq.getFront() << endl; dq.deletefront(); cout << "after deletion of front element new front element: " << dq.getFront() << endl; )
Tidskompleksitet
Tiden kompleksiteten af alle de ovennævnte operationer er konstant dvs. O(1)
.
Anvendelser af Deque-datastruktur
- Fortryd operationer på software.
- For at gemme historik i browsere.
- Til implementering af både stakke og køer.