I denne vejledning lærer du, hvordan en ny knude kan indsættes i et rød-sort træ er. Du finder også arbejdseksempler på indsættelser udført på et rød-sort træ i C, C ++, Java og Python.
Rød-sort træ er et selvbalancerende binært søgetræ, hvor hvert knudepunkt indeholder en ekstra bit til at betegne knudens farve, enten rød eller sort.
Før du læser denne artikel, se venligst artiklen om rød-sort træ.
Mens der indsættes en ny node, indsættes den nye node altid som en RØD node. Efter indsættelse af en ny node, hvis træet overtræder egenskaberne for det rød-sorte træ, udfører vi følgende operationer.
- Omfarve
- Rotation
Algoritme til indsættelse af en ny node
Følgende trin følges for at indsætte et nyt element i et rød-sort træ:
- Be
newNode
:Ny knude
- Lad y være bladet (dvs.
NIL
) ogx
være træets rod. Den nye node indsættes i det følgende træ.Indledende træ
- Kontroller, om træet er tomt (dvs. om det
x
erNIL
). Hvis ja, skal du indsættenewNode
som en rodknude og farve den sort. - Ellers gentag trinene efter trin indtil blad (
NIL
) er nået.- Sammenlign
newKey
medrootKey
. - Hvis
newKey
er større endrootKey
, gå gennem det rigtige undertræ. - Ellers krydser du det venstre undertræ.
Sti, der fører til den node, hvor newNode skal indsættes
- Sammenlign
- Tildel bladets forælder som forælder til
newNode
. - Hvis
leafKey
er større endnewKey
, lavnewNode
somrightChild
. - Ellers, lav
newNode
somleftChild
.Ny node indsat
- Tildel
NULL
til venstre ogrightChild
tilnewNode
. - Tildel RØD farve til
newNode
.Indstil farven på newNode rød, og tildel børnene null
- Ring til InsertFix-algoritmen for at opretholde egenskaben for rød-sort træ, hvis den overtrædes.
Hvorfor nyligt indsatte noder er altid røde i et rød-sort træ?
Dette skyldes, at indsættelse af en rød node ikke krænker dybdeegenskaben for et rød-sort træ.
Hvis du vedhæfter en rød node til en rød node, overtrædes reglen, men det er lettere at løse dette problem end det problem, der blev introduceret ved at krænke dybdeegenskaben.
Algoritme til at opretholde rød-sort ejendom efter indsættelse
Denne algoritme bruges til at opretholde egenskaben for et rød-sort træ, hvis indsættelse af en newNode overtræder denne egenskab.
- Gør følgende, indtil forældrene til
newNode
p
RØD er. - Hvis
p
er det venstre barngrandParent
gP
afnewNode
, skal du gøre følgende.
Sag I:- Hvis farven på den rigtige barn af
gP
afnewNode
er RØDE, sætte farven af både børngP
som sort og farven pågP
som RØD.Farveændring
- Tildel
gP
tilnewNode
.Omfordeling af newNode
Case-II: - (Inden man går videre til dette trin, mens loop kontrolleres. Hvis betingelserne ikke er opfyldt, er det loopet brudt.)
Ellers hvisnewNode
er det rigtige barn afp
den, tildelp
tilnewNode
.Tildeling af forælder til newNode som newNode
- Venstre-roter
newNode
.Venstre roterende
sag-III: - (Inden man går videre til dette trin, mens loop kontrolleres. Hvis betingelserne ikke er opfyldt, er det løkken brudt.)
Indstil farvep
som SORT og farvegP
som RØD.Farveændring
- Højre-roter
gP
.Højre rotering
- Hvis farven på den rigtige barn af
- Ellers gør følgende.
- Hvis farven på den venstre barn af
gP
afz
er RØDE, sætte farven af både børngP
som sort og farven pågP
som RØD. - Tildel
gP
tilnewNode
. - Else hvis
newNode
er venstre barn afp
derefter, tildelep
tilnewNode
og Right-RoternewNode
. - Indstil farve
p
som sort og farvegP
som RØD. - Venstre-roter
gP
.
- Hvis farven på den venstre barn af
- (Dette trin udføres efter at være kommet ud af while-løkken.)
Indstil træets rod som SORT.Indstil rodens farve sort
Det sidste træ ser sådan ud:

Python, Java og C / C ++ eksempler
Python Java C C ++# Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree()
// Implementing Red-Black Tree in Java class Node ( int data; Node parent; Node left; Node right; int color; ) public class RedBlackTree ( private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) ( if (node != TNULL) ( System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); ) ) // Inorder private void inOrderHelper(Node node) ( if (node != TNULL) ( inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); ) ) // Post order private void postOrderHelper(Node node) ( if (node != TNULL) ( postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); ) ) // Search the tree private Node searchTreeHelper(Node node, int key) ( if (node == TNULL || key == node.data) ( return node; ) if (key < node.data) ( return searchTreeHelper(node.left, key); ) return searchTreeHelper(node.right, key); ) // Balance the tree after deletion of a node private void fixDelete(Node x) ( Node s; while (x != root && x.color == 0) ( if (x == x.parent.left) ( s = x.parent.right; if (s.color == 1) ( s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; ) if (s.left.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.right.color == 0) ( s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; ) s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; ) ) else ( s = x.parent.left; if (s.color == 1) ( s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; ) if (s.right.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.left.color == 0) ( s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; ) s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; ) ) ) x.color = 0; ) private void rbTransplant(Node u, Node v) ( if (u.parent == null) ( root = v; ) else if (u == u.parent.left) ( u.parent.left = v; ) else ( u.parent.right = v; ) v.parent = u.parent; ) // Balance the node after insertion private void fixInsert(Node k) ( Node u; while (k.parent.color == 1) ( if (k.parent == k.parent.parent.right) ( u = k.parent.parent.left; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.left) ( k = k.parent; rightRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); ) ) else ( u = k.parent.parent.right; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.right) ( k = k.parent; leftRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); ) ) if (k == root) ( break; ) ) root.color = 0; ) private void printHelper(Node root, String indent, boolean last) ( if (root != TNULL) ( System.out.print(indent); if (last) ( System.out.print("R----"); indent += " "; ) else ( System.out.print("L----"); indent += "| "; ) String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); ) ) public RedBlackTree() ( TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; ) public void preorder() ( preOrderHelper(this.root); ) public void inorder() ( inOrderHelper(this.root); ) public void postorder() ( postOrderHelper(this.root); ) public Node searchTree(int k) ( return searchTreeHelper(this.root, k); ) public Node minimum(Node node) ( while (node.left != TNULL) ( node = node.left; ) return node; ) public Node maximum(Node node) ( while (node.right != TNULL) ( node = node.right; ) return node; ) public Node successor(Node x) ( if (x.right != TNULL) ( return minimum(x.right); ) Node y = x.parent; while (y != TNULL && x == y.right) ( x = y; y = y.parent; ) return y; ) public Node predecessor(Node x) ( if (x.left != TNULL) ( return maximum(x.left); ) Node y = x.parent; while (y != TNULL && x == y.left) ( x = y; y = y.parent; ) return y; ) public void leftRotate(Node x) ( Node y = x.right; x.right = y.left; if (y.left != TNULL) ( y.left.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.left) ( x.parent.left = y; ) else ( x.parent.right = y; ) y.left = x; x.parent = y; ) public void rightRotate(Node x) ( Node y = x.left; x.left = y.right; if (y.right != TNULL) ( y.right.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.right) ( x.parent.right = y; ) else ( x.parent.left = y; ) y.right = x; x.parent = y; ) public void insert(int key) ( Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) ( y = x; if (node.data < x.data) ( x = x.left; ) else ( x = x.right; ) ) node.parent = y; if (y == null) ( root = node; ) else if (node.data < y.data) ( y.left = node; ) else ( y.right = node; ) if (node.parent == null) ( node.color = 0; return; ) if (node.parent.parent == null) ( return; ) fixInsert(node); ) public Node getRoot() ( return this.root; ) public void printTree() ( printHelper(this.root, "", true); ) public static void main(String() args) ( RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); ) )
// Implementing Red-Black Tree in C #include #include enum nodeColor ( RED, BLACK ); struct rbNode ( int data, color; struct rbNode *link(2); ); struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) ( struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link(0) = newnode->link(1) = NULL; return newnode; ) // Insert an node void insertion(int data) ( struct rbNode *stack(98), *ptr, *newnode, *xPtr, *yPtr; int dir(98), ht = 0, index; ptr = root; if (!root) ( root = createNode(data); return; ) stack(ht) = root; dir(ht++) = 0; while (ptr != NULL) ( if (ptr->data == data) ( printf("Duplicates Not Allowed!!"); return; ) index = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; ptr = ptr->link(index); dir(ht++) = index; ) stack(ht - 1)->link(index) = newnode = createNode(data); while ((ht>= 3) && (stack(ht - 1)->color == RED)) ( if (dir(ht - 2) == 0) ( yPtr = stack(ht - 2)->link(1); if (yPtr != NULL && yPtr->color == RED) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 0) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(1); xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; stack(ht - 2)->link(0) = yPtr; ) xPtr = stack(ht - 2); xPtr->color = RED; yPtr->color = BLACK; xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) else ( yPtr = stack(ht - 2)->link(0); if ((yPtr != NULL) && (yPtr->color == RED)) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 1) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; stack(ht - 2)->link(1) = yPtr; ) xPtr = stack(ht - 2); yPtr->color = BLACK; xPtr->color = RED; xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) ) root->color = BLACK; ) // Delete a node void deletion(int data) ( struct rbNode *stack(98), *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir(98), ht = 0, diff, i; enum nodeColor color; if (!root) ( printf("Tree not available"); return; ) ptr = root; while (ptr != NULL) ( if ((data - ptr->data) == 0) break; diff = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; dir(ht++) = diff; ptr = ptr->link(diff); ) if (ptr->link(1) == NULL) ( if ((ptr == root) && (ptr->link(0) == NULL)) ( free(ptr); root = NULL; ) else if (ptr == root) ( root = ptr->link(0); free(ptr); ) else ( stack(ht - 1)->link(dir(ht - 1)) = ptr->link(0); ) ) else ( xPtr = ptr->link(1); if (xPtr->link(0) == NULL) ( xPtr->link(0) = ptr->link(0); color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) ( root = xPtr; ) else ( stack(ht - 1)->link(dir(ht - 1)) = xPtr; ) dir(ht) = 1; stack(ht++) = xPtr; ) else ( i = ht++; while (1) ( dir(ht) = 0; stack(ht++) = xPtr; yPtr = xPtr->link(0); if (!yPtr->link(0)) break; xPtr = yPtr; ) dir(i) = 1; stack(i) = yPtr; if (i> 0) stack(i - 1)->link(dir(i - 1)) = yPtr; yPtr->link(0) = ptr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = ptr->link(1); if (ptr == root) ( root = yPtr; ) color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; ) ) if (ht color == BLACK) ( while (1) ( pPtr = stack(ht - 1)->link(dir(ht - 1)); if (pPtr && pPtr->color == RED) ( pPtr->color = BLACK; break; ) if (ht link(1); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 0; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(1); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(1) || rPtr->link(1)->color == BLACK) ( qPtr = rPtr->link(0); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(0) = qPtr->link(1); qPtr->link(1) = rPtr; rPtr = stack(ht - 1)->link(1) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(1)->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) else ( rPtr = stack(ht - 1)->link(0); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 1; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(0); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(0) || rPtr->link(0)->color == BLACK) ( qPtr = rPtr->link(1); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(1) = qPtr->link(0); qPtr->link(0) = rPtr; rPtr = stack(ht - 1)->link(0) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(0)->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) ht--; ) ) ) // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) ( if (node) ( inorderTraversal(node->link(0)); printf("%d ", node->data); inorderTraversal(node->link(1)); ) return; ) // Driver code int main() ( int ch, data; while (1) ( printf("1. Insertion 2. Deletion"); printf("3. Traverse 4. Exit"); printf("Enter your choice:"); scanf("%d", &ch); switch (ch) ( case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf(""); break; case 4: exit(0); default: printf("Not available"); break; ) printf(""); ) return 0; )
// Implementing Red-Black Tree in C++ #include using namespace std; struct Node ( int data; Node *parent; Node *left; Node *right; int color; ); typedef Node *NodePtr; class RedBlackTree ( private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) ( node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; ) // Preorder void preOrderHelper(NodePtr node) ( if (node != TNULL) ( cout right); ) ) // Inorder void inOrderHelper(NodePtr node) ( if (node != TNULL) ( inOrderHelper(node->left); cout left); postOrderHelper(node->right); cout left, key); ) return searchTreeHelper(node->right, key); ) // For balancing the tree after deletion void deleteFix(NodePtr x) ( NodePtr s; while (x != root && x->color == 0) ( if (x == x->parent->left) ( s = x->parent->right; if (s->color == 1) ( s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; ) if (s->left->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->right->color == 0) ( s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; ) s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; ) ) else ( s = x->parent->left; if (s->color == 1) ( s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; ) if (s->right->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->left->color == 0) ( s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; ) s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; ) ) ) x->color = 0; ) void rbTransplant(NodePtr u, NodePtr v) ( if (u->parent == nullptr) ( root = v; ) else if (u == u->parent->left) ( u->parent->left = v; ) else ( u->parent->right = v; ) v->parent = u->parent; ) void deleteNodeHelper(NodePtr node, int key) ( NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) ( if (node->data == key) ( z = node; ) if (node->data right; ) else ( node = node->left; ) ) if (z == TNULL) ( cout << "Key not found in the tree" left == TNULL) ( x = z->right; rbTransplant(z, z->right); ) else if (z->right == TNULL) ( x = z->left; rbTransplant(z, z->left); ) else ( y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) ( x->parent = y; ) else ( rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; ) rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; ) delete z; if (y_original_color == 0) ( deleteFix(x); ) ) // For balancing the tree after insertion void insertFix(NodePtr k) ( NodePtr u; while (k->parent->color == 1) ( if (k->parent == k->parent->parent->right) ( u = k->parent->parent->left; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->left) ( k = k->parent; rightRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); ) ) else ( u = k->parent->parent->right; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->right) ( k = k->parent; leftRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); ) ) if (k == root) ( break; ) ) root->color = 0; ) void printHelper(NodePtr root, string indent, bool last) ( if (root != TNULL) ( cout << indent; if (last) ( cout << "R----"; indent += " "; ) else ( cout right, indent, true); ) ) public: RedBlackTree() ( TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; ) void preorder() ( preOrderHelper(this->root); ) void inorder() ( inOrderHelper(this->root); ) void postorder() ( postOrderHelper(this->root); ) NodePtr searchTree(int k) ( return searchTreeHelper(this->root, k); ) NodePtr minimum(NodePtr node) ( while (node->left != TNULL) ( node = node->left; ) return node; ) NodePtr maximum(NodePtr node) ( while (node->right != TNULL) ( node = node->right; ) return node; ) NodePtr successor(NodePtr x) ( if (x->right != TNULL) ( return minimum(x->right); ) NodePtr y = x->parent; while (y != TNULL && x == y->right) ( x = y; y = y->parent; ) return y; ) NodePtr predecessor(NodePtr x) ( if (x->left != TNULL) ( return maximum(x->left); ) NodePtr y = x->parent; while (y != TNULL && x == y->left) ( x = y; y = y->parent; ) return y; ) void leftRotate(NodePtr x) ( NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) ( y->left->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->left) ( x->parent->left = y; ) else ( x->parent->right = y; ) y->left = x; x->parent = y; ) void rightRotate(NodePtr x) ( NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) ( y->right->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->right) ( x->parent->right = y; ) else ( x->parent->left = y; ) y->right = x; x->parent = y; ) // Inserting a node void insert(int key) ( NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) ( y = x; if (node->data data) ( x = x->left; ) else ( x = x->right; ) ) node->parent = y; if (y == nullptr) ( root = node; ) else if (node->data data) ( y->left = node; ) else ( y->right = node; ) if (node->parent == nullptr) ( node->color = 0; return; ) if (node->parent->parent == nullptr) ( return; ) insertFix(node); ) NodePtr getRoot() ( return this->root; ) void deleteNode(int data) ( deleteNodeHelper(this->root, data); ) void printTree() ( if (root) ( printHelper(this->root, "", true); ) ) ); int main() ( RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); )