Huffman kodningsalgoritme

I denne vejledning lærer du, hvordan Huffman Coding fungerer. Du finder også arbejdseksempler på Huffman Coding i C, C ++, Java og Python.

Huffman Coding er en teknik til komprimering af data for at reducere størrelsen uden at miste detaljerne. Det blev først udviklet af David Huffman.

Huffman-kodning er generelt nyttigt til at komprimere de data, hvor der ofte findes tegn.

Hvordan fungerer Huffman Coding?

Antag, at nedenstående streng skal sendes over et netværk.

Indledende streng

Hver karakter optager 8 bits. Der er i alt 15 tegn i ovenstående streng. Således 8 * 15 = 120kræves der i alt bit for at sende denne streng.

Ved hjælp af Huffman Coding-teknikken kan vi komprimere strengen til en mindre størrelse.

Huffman-kodning opretter først et træ ved hjælp af karakterens frekvenser og genererer derefter kode for hvert tegn.

Når dataene er kodet, skal de afkodes. Afkodning udføres ved hjælp af det samme træ.

Huffman-kodning forhindrer enhver tvetydighed i afkodningsprocessen ved hjælp af begrebet præfiks-kode, dvs. en kode tilknyttet et tegn skal ikke være til stede i præfikset for nogen anden kode. Træet oprettet ovenfor hjælper med at vedligeholde ejendommen.

Huffman-kodning udføres ved hjælp af følgende trin.

  1. Beregn hyppigheden af ​​hvert tegn i strengen. Frekvens af streng
  2. Sorter tegnene i stigende rækkefølge for frekvensen. Disse gemmes i en prioritetskø Q. Tegn sorteret efter frekvensen
  3. Lav hver unikke karakter som en bladknude.
  4. Opret en tom node z. Tildel minimumfrekvensen til det venstre barn af z, og tildel den anden minimumfrekvens til det højre barn af z. Indstil z-værdien som summen af ​​de to ovennævnte minimumsfrekvenser. Få summen af ​​de mindste tal
  5. Fjern disse to minimumsfrekvenser fra Q og tilføj summen til listen over frekvenser (* betegner de interne noder i figuren ovenfor).
  6. Indsæt node z i træet.
  7. Gentag trin 3 til 5 for alle tegn. Gentag trin 3 til 5 for alle tegn. Gentag trin 3 til 5 for alle tegn.
  8. For hver ikke-bladknude tildeles 0 til venstre kant og 1 til højre kant. Tildel 0 til venstre kant og 1 til højre kant

For at sende ovenstående streng over et netværk skal vi sende træet såvel som ovenstående komprimeret kode. Den samlede størrelse er angivet i nedenstående tabel.

Karakter Frekvens Kode Størrelse
EN 5 11 5 * 2 = 10
B 1 100 1 * 3 = 3
C 6 0 6 * 1 = 6
D 3 101 3 * 3 = 9
4 * 8 = 32 bits 15 bit 28 bit

Uden kodning var strengens samlede størrelse 120 bit. Efter kodning reduceres størrelsen til 32 + 15 + 28 = 75.

Afkodning af koden

Til afkodning af koden kan vi tage koden og krydse gennem træet for at finde tegnet.

Lad 101 skal afkodes, vi kan krydse fra roden som i figuren nedenfor.

Afkodning

Huffman kodningsalgoritme

opret en prioritetskø Q bestående af hver unikke karakter. sorter derefter i stigende rækkefølge efter deres frekvenser. for alle de unikke tegn: Opret en newNode-ekstrakt-minimumværdi fra Q og tildel den til venstreChild of newNode-ekstrakt-minimumværdi fra Q og tildel den til rightChild of newNode Beregn summen af ​​disse to minimumsværdier og tildel den til værdien af ​​newNode-insert denne newNode i træet returnerer rootNode

Python, Java og C / C ++ eksempler

Python Java C C ++
 # Huffman Coding in python string = 'BCAADDDCCACACAC' # Creating tree nodes class NodeTree(object): def __init__(self, left=None, right=None): self.left = left self.right = right def children(self): return (self.left, self.right) def nodes(self): return (self.left, self.right) def __str__(self): return '%s_%s' % (self.left, self.right) # Main function implementing huffman coding def huffman_code_tree(node, left=True, binString=''): if type(node) is str: return (node: binString) (l, r) = node.children() d = dict() d.update(huffman_code_tree(l, True, binString + '0')) d.update(huffman_code_tree(r, False, binString + '1')) return d # Calculating frequency freq = () for c in string: if c in freq: freq(c) += 1 else: freq(c) = 1 freq = sorted(freq.items(), key=lambda x: x(1), reverse=True) nodes = freq while len(nodes)> 1: (key1, c1) = nodes(-1) (key2, c2) = nodes(-2) nodes = nodes(:-2) node = NodeTree(key1, key2) nodes.append((node, c1 + c2)) nodes = sorted(nodes, key=lambda x: x(1), reverse=True) huffmanCode = huffman_code_tree(nodes(0)(0)) print(' Char | Huffman code ') print('----------------------') for (char, frequency) in freq: print(' %-4r |%12s' % (char, huffmanCode(char)))
 // Huffman Coding in Java import java.util.PriorityQueue; import java.util.Comparator; class HuffmanNode ( int item; char c; HuffmanNode left; HuffmanNode right; ) // For comparing the nodes class ImplementComparator implements Comparator ( public int compare(HuffmanNode x, HuffmanNode y) ( return x.item - y.item; ) ) // IMplementing the huffman algorithm public class Huffman ( public static void printCode(HuffmanNode root, String s) ( if (root.left == null && root.right == null && Character.isLetter(root.c)) ( System.out.println(root.c + " | " + s); return; ) printCode(root.left, s + "0"); printCode(root.right, s + "1"); ) public static void main(String() args) ( int n = 4; char() charArray = ( 'A', 'B', 'C', 'D' ); int() charfreq = ( 5, 1, 6, 3 ); PriorityQueue q = new PriorityQueue(n, new ImplementComparator()); for (int i = 0; i 1) ( HuffmanNode x = q.peek(); q.poll(); HuffmanNode y = q.peek(); q.poll(); HuffmanNode f = new HuffmanNode(); f.item = x.item + y.item; f.c = '-'; f.left = x; f.right = y; root = f; q.add(f); ) System.out.println(" Char | Huffman code "); System.out.println("--------------------"); printCode(root, ""); ) )
 // Huffman Coding in C #include #include #define MAX_TREE_HT 50 struct MinHNode ( char item; unsigned freq; struct MinHNode *left, *right; ); struct MinHeap ( unsigned size; unsigned capacity; struct MinHNode **array; ); // Create nodes struct MinHNode *newNode(char item, unsigned freq) ( struct MinHNode *temp = (struct MinHNode *)malloc(sizeof(struct MinHNode)); temp->left = temp->right = NULL; temp->item = item; temp->freq = freq; return temp; ) // Create min heap struct MinHeap *createMinH(unsigned capacity) ( struct MinHeap *minHeap = (struct MinHeap *)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHNode **)malloc(minHeap->capacity * sizeof(struct MinHNode *)); return minHeap; ) // Function to swap void swapMinHNode(struct MinHNode **a, struct MinHNode **b) ( struct MinHNode *t = *a; *a = *b; *b = t; ) // Heapify void minHeapify(struct MinHeap *minHeap, int idx) ( int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left size && minHeap->array(left)->freq array(smallest)->freq) smallest = left; if (right size && minHeap->array(right)->freq array(smallest)->freq) smallest = right; if (smallest != idx) ( swapMinHNode(&minHeap->array(smallest), &minHeap->array(idx)); minHeapify(minHeap, smallest); ) ) // Check if size if 1 int checkSizeOne(struct MinHeap *minHeap) ( return (minHeap->size == 1); ) // Extract min struct MinHNode *extractMin(struct MinHeap *minHeap) ( struct MinHNode *temp = minHeap->array(0); minHeap->array(0) = minHeap->array(minHeap->size - 1); --minHeap->size; minHeapify(minHeap, 0); return temp; ) // Insertion function void insertMinHeap(struct MinHeap *minHeap, struct MinHNode *minHeapNode) ( ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq array((i - 1) / 2)->freq) ( minHeap->array(i) = minHeap->array((i - 1) / 2); i = (i - 1) / 2; ) minHeap->array(i) = minHeapNode; ) void buildMinHeap(struct MinHeap *minHeap) ( int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i>= 0; --i) minHeapify(minHeap, i); ) int isLeaf(struct MinHNode *root) ( return !(root->left) && !(root->right); ) struct MinHeap *createAndBuildMinHeap(char item(), int freq(), int size) ( struct MinHeap *minHeap = createMinH(size); for (int i = 0; i array(i) = newNode(item(i), freq(i)); minHeap->size = size; buildMinHeap(minHeap); return minHeap; ) struct MinHNode *buildHuffmanTree(char item(), int freq(), int size) ( struct MinHNode *left, *right, *top; struct MinHeap *minHeap = createAndBuildMinHeap(item, freq, size); while (!checkSizeOne(minHeap)) ( left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); ) return extractMin(minHeap); ) void printHCodes(struct MinHNode *root, int arr(), int top) ( if (root->left) ( arr(top) = 0; printHCodes(root->left, arr, top + 1); ) if (root->right) ( arr(top) = 1; printHCodes(root->right, arr, top + 1); ) if (isLeaf(root)) ( printf(" %c | ", root->item); printArray(arr, top); ) ) // Wrapper function void HuffmanCodes(char item(), int freq(), int size) ( struct MinHNode *root = buildHuffmanTree(item, freq, size); int arr(MAX_TREE_HT), top = 0; printHCodes(root, arr, top); ) // Print the array void printArray(int arr(), int n) ( int i; for (i = 0; i < n; ++i) printf("%d", arr(i)); printf(""); ) int main() ( char arr() = ('A', 'B', 'C', 'D'); int freq() = (5, 1, 6, 3); int size = sizeof(arr) / sizeof(arr(0)); printf(" Char | Huffman code "); printf("--------------------"); HuffmanCodes(arr, freq, size); )
 // Huffman Coding in C++ #include using namespace std; #define MAX_TREE_HT 50 struct MinHNode ( unsigned freq; char item; struct MinHNode *left, *right; ); struct MinH ( unsigned size; unsigned capacity; struct MinHNode **array; ); // Creating Huffman tree node struct MinHNode *newNode(char item, unsigned freq) ( struct MinHNode *temp = (struct MinHNode *)malloc(sizeof(struct MinHNode)); temp->left = temp->right = NULL; temp->item = item; temp->freq = freq; return temp; ) // Create min heap using given capacity struct MinH *createMinH(unsigned capacity) ( struct MinH *minHeap = (struct MinH *)malloc(sizeof(struct MinH)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHNode **)malloc(minHeap->capacity * sizeof(struct MinHNode *)); return minHeap; ) // Swap function void swapMinHNode(struct MinHNode **a, struct MinHNode **b) ( struct MinHNode *t = *a; *a = *b; *b = t; ) // Heapify void minHeapify(struct MinH *minHeap, int idx) ( int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left size && minHeap->array(left)->freq array(smallest)->freq) smallest = left; if (right size && minHeap->array(right)->freq array(smallest)->freq) smallest = right; if (smallest != idx) ( swapMinHNode(&minHeap->array(smallest), &minHeap->array(idx)); minHeapify(minHeap, smallest); ) ) // Check if size if 1 int checkSizeOne(struct MinH *minHeap) ( return (minHeap->size == 1); ) // Extract the min struct MinHNode *extractMin(struct MinH *minHeap) ( struct MinHNode *temp = minHeap->array(0); minHeap->array(0) = minHeap->array(minHeap->size - 1); --minHeap->size; minHeapify(minHeap, 0); return temp; ) // Insertion void insertMinHeap(struct MinH *minHeap, struct MinHNode *minHeapNode) ( ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq array((i - 1) / 2)->freq) ( minHeap->array(i) = minHeap->array((i - 1) / 2); i = (i - 1) / 2; ) minHeap->array(i) = minHeapNode; ) // BUild min heap void buildMinHeap(struct MinH *minHeap) ( int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i>= 0; --i) minHeapify(minHeap, i); ) int isLeaf(struct MinHNode *root) ( return !(root->left) && !(root->right); ) struct MinH *createAndBuildMinHeap(char item(), int freq(), int size) ( struct MinH *minHeap = createMinH(size); for (int i = 0; i array(i) = newNode(item(i), freq(i)); minHeap->size = size; buildMinHeap(minHeap); return minHeap; ) struct MinHNode *buildHfTree(char item(), int freq(), int size) ( struct MinHNode *left, *right, *top; struct MinH *minHeap = createAndBuildMinHeap(item, freq, size); while (!checkSizeOne(minHeap)) ( left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); ) return extractMin(minHeap); ) void printHCodes(struct MinHNode *root, int arr(), int top) ( if (root->left) ( arr(top) = 0; printHCodes(root->left, arr, top + 1); ) if (root->right) ( arr(top) = 1; printHCodes(root->right, arr, top + 1); ) if (isLeaf(root)) ( cout 

Huffman Coding Complexity

The time complexity for encoding each unique character based on its frequency is O(nlog n).

Extracting minimum frequency from the priority queue takes place 2*(n-1) times and its complexity is O(log n). Thus the overall complexity is O(nlog n).

Huffman Coding Applications

  • Huffman coding is used in conventional compression formats like GZIP, BZIP2, PKZIP, etc.
  • For text and fax transmissions.

Interessante artikler...